kinematics  
 
  Eddy currents  
 
  Lenz's law  
 
  Lines of fields  
 
  Insulators  
 
  Diff. Eqs   
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 

 








© The scientific sentence. 2010

Electrostatics: Electric field
Some integrals



1. Integral: ∫dx/(x2 + R2)3/2



Let's find the following integral:
Let the following change of variable:

x/R = tg y

When x goes from - ∞ towards + ∞,
y goes from - π/2 towards + π/2.

Taking the derivative:
dx = R tg'y dy = R (1 + tg2y) dy

x2 + R2 = R2 tg2y + R2 = R2(1 + tg2y)

∫dx/(x2 + R2)3/2 = ∫ R (1 + tg2y) dy/(x2 + R2)3/2
= ∫ R (1 + tg2y) dy/ R3(1 + tg2y)3/2
= ∫ dy/ R2(1 + tg2y)1/2 = ∫ dy cos y/ R2

This integral is even, It follows that:

∫ dx/(x2 + R2)3/2 = 2 (1/ R2) ∫ dy cos y
= 2 (1/ R2) sin y (y: from 0 to + π/2) = 2/R2



Now let's find the following integral:


Let the following change of variable:

z/y = tg θ

When z goes from - l towards + l,
θ goes from - arctan(l/y) towards + arctan(l/y).

from above, we have:

I = 2 (1/ y2) sin θ
from 0 towards + arctan(l/y)

We have

sin2θ = 1 - cos2θ = 1 - sin2θ/tan2θ, then
sin θ = tan θ/√(1 + tan2θ)

Hence

I = 2 (1/ y2) sin θ
θ : from 0 towards + arctan(l/y)

= 2 (1/ y2) [(sin(arctan(l/y) - sin(0)] =
2 (1/ y2) [(l/y)/√(1 + (l/y)2)] = (2l/ y2)/√(y2 + l2)




2. Integral: ∫exp(ax) cosbx dx



We consider the following integral:

∫exp(ax) cosbx dx

I = ∫exp(ax) cos bx dx

By part;

exp(ax) = u and
dv = cos bx → v = (1/b)sin bx

I = exp(ax) (1/b)sin bx - ∫ (a/b)sin bx exp(ax) dx
= exp(ax) (1/b)sin bx - (a/b) ∫ sin bx exp(ax) dx

J = ∫ sin bx exp(ax) dx
u = exp(ax) dv = sin bx dx → v = - (1/b) cos bx
J = - (1/b) cos bx exp(ax) + (a/b)∫ exp(ax) cos bx
= - (1/b) cos bx exp(ax) + (a/b)I

I = exp(ax) (1/b)sin bx - (a/b)J
= exp(ax) (1/b)sin bx - (a/b)[- (1/b) cos bx exp(ax) + (a/b)I]
= exp(ax) (1/b)sin bx + (a/b)[ (1/b) cos bx exp(ax) - (a/b)I]
= exp(ax) (1/b)sin bx + (a/b2) cos bx exp(ax) - (a2/b2)I

(a2 + b2)/b2 I = exp(ax) (1/b)sin bx + (a/b2) cos bx exp(ax) (a2 + b2) I
= exp(ax) b sin bx + a cos bx exp(ax)

I = [b sin bx exp(ax) + a cos bx exp(ax)]/(a2 + b2)

∫exp(ax) cos bx dx =
exp(ax) [b sin bx + a cos bx]/(a2 + b2)



3. The probability Integrale



Using this integrale in Thermodynamics

J(n) = ∫ xn exp(- a x2)dx     (1)
[- ∞ → + ∞]

The function to integrate : xn exp(- a x2) is odd and therefore the integrale J(n) is null if n is odd.

It is even if n is even and therefore the integrale J(n) can be written as:

J(n) = 2. I(n)     (2)

Where:

I(n) = ∫ xn exp(- a x2) dx [0 → + ∞]

I(n) = ∫ xn exp(- a x2)dx     (3)
[0 → + ∞]


First, Let's integrate I(0).

I(0) = ∫ exp(- a x2) dx [0 → + ∞]
x is a dummy variable, thus:

I(0) = ∫ exp(- a y2) dy [0 → + ∞]

Multiplying the two equations, we get;

I2(0) = ∫ exp(- a x2) . ∫ exp(- a y2) dy [0 → + ∞]
= ∫ ∫ exp(- a x2 . exp(- a y2 dx dy [0 → + ∞] =
∫ ∫ exp[- a (x2 + y2)] dx dy [0 → + ∞]     (4)


Let's switch to the polar coordinates:

r2 = x2 + y2
dxdy = r dr dθ




The equation (4) becomes:

I2(0) = ∫ exp[- a r2] r dr dθ [0 → + ∞ & 0 → π/2]     (5)

(remark that the bouderies of the integrale are 0 and π/2 because r is limited to the first quadrant)

The equation (5) becomes:

I2(0) = (π/2) ∫ exp[- a r2] r dr [0 → + ∞]     (6)

∫ exp[- a r2] r dr [0 → + ∞] is straightforward.
Let's substitute this way:

a r2 = z. Then dz = 2 a r dr. and r dr = dz/2a

Then: ∫ exp[- a r2] r dr = (1/2a)∫ exp[- z] dz =
- (1/2a)∫ exp[- z] [0 → + ∞] = 1/2a

The equation (6) becomes:

I2(0) = (π/2) (1/2a)= π/4a     (7)

And:

I(0) = (π/2) (1/2a)= [π/4a]1/2     (8)


I(1) can be written as :

I(1) = ∫ x exp(- a x2 dx [0 → + ∞]     (9)

From the relationships (6) and (7), it comes:

I(1) = (2/π)I2(0) = (2/π)I2(0) = (2/π)π/4a = 1/2a

I(1) = 1/2a     (10)


Now we will find I(2).

I(2) = ∫ x2 exp(- a x2 dx [0 → + ∞]     (11)

Let's take the derivative of I(0):

dI(0)/da = d[∫ exp(- a x2 dx]/da [0 → + ∞] =

- ∫ x2 exp(- a x2 dx] [0 → + ∞] = - I(2)     (12)

From the equation (8), we get:

dI(0)/da = d([π/4a]1/2)/da = (1/2)(π/4)1/2)(a)1/2 (-1/a2) =
- (π)1/2/4 a3/2     (13)

Equating (12) and (13), we get:

- I(2) = - (π)1/2/4 a3/2

Then:

I(2) = (π)1/2/4 a3/2     (14)


The derivative of I(1)is:

dI(1)/da = d[∫ x exp(- a x2 dx]/da [0 → + ∞] =
- ∫ x3 exp(- a x2 dx = - I(3)

From the equation (10), we get:

dI(1)/da = -1/2a2. Equating, we get:

- I(3) = -1/2a2. Then:

I(3) = 1/2a2     (15)

We can continue this way : taking the derivative of
I(n) to get - I(n + 2) and equating with dI(n)/da in
order to find I(n + 2).

Resuming, we have :

I(0) = [π/4a]1/2
I(1) = 1/2a
I(2) = (π)1/2/4 a3/2
I(3) = 1/2a2
...
By recurrence, the following is inferred:

For odd n:
I(n) = [(n - 1)/2]!/ 2 a(n + 1)/2

For even n:
I(n) = [π/a]1/2 [1.3.5. ... .(n - 1)]/2.(2a)n/2
   







 


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.