theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 


   Complex integration


Contents





© The scientific sentence. 2010

Complex integration :
Residue calculus





1. How to obtain a residue


• The point zo is a pole of order m for f, if the Laurent expansion of f around zo starts from j = - m, so that a- m ≠ 0. That is
\[ \large\bf\color{brown}{ \textit f(\textit z) = \sum_{j = - m}^\infty \textit a_j(\textit z - \textit z_o)^j} = \\ \] \[ \bf\color{indigo}{ \frac{a_{- m}}{(\textit z - \textit z_o)^m} + ... + a_0 + a_1(\textit z - \textit z_o) + a_2(\textit z - \textit z_o)^2 + ... \\ with \; a_{- m} \ne 0 } \] ⇒ (z - zo)m f(z) = a- m + a- m + 1(z - zo) + ... + a- 1(z - zo)m - 1 + a0(z - zo)m + a1(z - zo)m + 1 + a2(z - zo)m + 2 + ... + am(z - zo)2m + ...

Let's take the derivative of order m - 1 . We find:

dm - 1[(z - zo)m f(z)]dzm - 1 = a- m + a- m + 1(z - zo) + ... + a- 1(z - zo)m - 1 + a0(z - zo)m + a1(z - zo)m + 1 + a2(z - zo)m + 2 + ... + am(z - zo)2m + ... =
\[ \large\bf\color{brown}{ \frac{d^{m-1}}{dz^{m-1}}[(z - z_o)^m f(z)] = (m - 1)! \; a_{-1} + \\ \sum_{n = 1}^\infty \textit b_n(\textit z - \textit z_o)^n } \] Let's take the limit z → zo. We obtain:


\[ \large\bf\color{blue}{ \text{R(zo) = a_1 = } } \] \[ \large\bf\color{blue}{ \lim_{\textit z \to zo} { \frac{1}{(m - 1)!} \frac{d^{m-1}}{dz^{m-1}}[(z - z_o)^m f(z)]} = } \] \[ \bf\color{red}{ \textit{Residue of f at z = zo.} } \]



2. Case of a simple pole


If zo is a simple pole of f(z),that is m = 1, we will have:
\[ \large\bf\color{blue}{ \text{R(zo) = } \lim_{\textit z \to zo} [(z - z_o) f(z)] = } \] \[ \bf\color{red}{ \textit {Residue of f at z = zo.} } \] f(z) has a pole of order 1, so f(z) can be written as: \[ \large\bf\color{blue}{ f(z) = \frac {g(z)}{h(z)} } \]
Where g(z) is analytic and non-zero at zo; and h(zo) = 0.
Therefore

\[ \bf\color{teal}{ \text{R(zo) = } \lim_{\textit z \to zo} [(z - z_o) f(z)] = \\ \lim_{\textit z \to zo} [(z - z_o) \frac {g(z)}{h(z)}] \\ = g(zo) \lim_{\textit z \to zo} \frac {(z - z_o)}{h(z)} \\ = g(zo) \lim_{\textit z \to zo} \frac {1}{\frac{h(z) - h(zo)}{z - zo}} \\ = g(zo) \lim_{\textit z \to zo} \frac {1}{h'(z)} = \frac {g(zo)}{h'(zo)} } \]



3. Example




f(z) has two simple poles of order m = 2. zo = + i, and zo = - i.

\[ \bf\color{blue}{ \text{Res(- i) = } \lim_{\textit z \to - i} \frac{d}{dz}[(z + i)^2 f(z)] = \\ \lim_{\textit z \to - i} \frac{d}{dz}[(z + i)^2 \frac {exp \; \textit {iz} }{(\textit z + i)^2 (\textit z - i)^2} \;] = \\ \lim_{\textit z \to - i} \frac{d}{dz}[ \frac {exp \; \textit {iz} }{ (\textit z - i)^2}] = 0 } \]
\[ \bf\color{indigo}{ \text{Res(+ i) = } \lim_{\textit z \to i} \frac{d}{dz}[(z - i)^2 f(z)] = \\ \lim_{\textit z \to - i} \frac{d}{dz}[(z - i)^2 \frac {exp \; \textit {iz} }{(\textit z + i)^2 (\textit z - i)^2} \;] = \\ \lim_{\textit z \to i} \frac{d}{dz}[ \frac {exp \; \textit {iz} }{ (\textit z + i)^2}] = - \frac{i}{2e} } \]






  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.