theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  home  
 
  ask us  
 

 
      Calculus II

      Contents




© The scientific sentence. 2010

Calculus II: Area integrals



If we rotate a solid object about a rotation axis, each point of this solid makes a circlar orbit around this axis. To define the related generated volume we will use definite integrales. There are two ways to evaluate this volume, the first method uses vertical slices, the second uses horizontal slices. In pratique, we use the vertical slices perpendicular to the rotation axis

1.Area between two curves



Let two functions f(x) and g(x) continuous in the interval [a, b], with f(x) >= g(x) for all values in this interval [a, b]. The area bounded by the related two curves between a and b is:
  b  
  [f(x) - g(x)] dx
  a  


2. Example 1

2.1. Example 1



What is the value of the area between the two curves of the two functions f(x) = - x2 + 2 and the function g(x) = x from 0 to x = 1 ?
  1  
  [f(x) - g(x)] dx =
  0  
  1  
  [- x2 + 2 - x] dx
  0  
 1 
[- x3/3 - x2/2 + 2x ]  =  7/6
 0 



2.2. Example 2



2.2.1. Vertical slices (vertical strips)

The points p and q are given by the intersection of the two curves, so

- x2 + 6x - 5 = x - 2

That gives:

p = (5 - √13)/2
q = (5 + √13)/2

h(x) = [- x2 + 6x - 5] - [x - 2] =
- x2 + 6x - 5 - x + 2 = - x2 + 5x - 3
  q = (5 + √13)/2  
  h(x) dx
  p = (5 - √13)/2  
=
  q  
[- x3/3 + 5x2/2 - 3 x ]    
  p  

2.2.1. Horizontal slices

y = - x2 + 6x - 5
x2 - 6x + 5 + y = 0

The expression of x with respect to y is:

y1 = 3 - [4 - y]1/2 always < 0
y2 = 3 + [4 - y]1/2 always > 0

The definite integrale goes from m to 0 then from o to n

n = q - 2 = (5 + √13)/2 - 2 = (1 + √13)/2
m = p - 2 = (5 - √13)/2 - 2 = (1 - √13)/2

h(y) = h1(y) + h2(y)

h1(y) = (y + 2) - y1 = (y + 2) - (3 - [4 - y]1/2)

h1(y) = y - 1 + [4 - y]1/2) for y < 0

h2(y) = (y + 2) - y2 = (y + 2) - (3 + [4 - y]1/2)

h2(x) = y - 1 - [4 - y]1/2) for y > 0
  n      0       n  
  h(y) dy   =     h1(y) dy   +       h2(y) dy
  m      m       0  

We have:
     
  h1(y) dy = y2/2 - y - (2/3)(4 - y)3/2 = H1(y)
     

and
     
  h2(y) dy = y2/2 - y + (2/3)(4 - y)3/2 = H2(y)
     

Therefore
  n  
  h(y) dy = H1(0) - H1(m) + H2(n) - H2(0)
  m  

H1(0) = - 16/3
H2(0) = 16/3
n = (1 + √13)/2
m = (1 - √13)/2
H1(y) = y2/2 - y - (2/3)(4 - y)3/2
H2(y) = y2/2 - y + (2/3)(4 - y)3/2



5. Exercises




  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.